
Erasable Contracts

Jao-ke Chin-Lee Louis Li
Harvard University

{jchinlee, louisli}@college.harvard.edu

Abstract

Contract programming is a design approach that al-
lows programmers to design formal specifications for
software, known as “contracts”. These contracts, ex-
ecuted at runtime, allow programmers to make asser-
tions about the behavior of their software and ensure
program correctness. In a language with side-effects,
however, it is possible for these contracts to modify
memory and consequently change the behavior of the
program. While contracts provide the specifications,
these specifications clearly should not change the be-
havior of the program that they enforce. Instead, if the
contracts were removed (“erased”), then the behavior
of the program should be the same as if the contracts re-
mained. This notion is captured by the idea of erasabil-

ity. We present a calculus for erasable contracts, estab-
lish properties such as type soundness, and prove a for-
mal definition of erasability for the language.

1. Introduction

Contract programming is a design approach that allows
programmers to design formal specifications for soft-
ware. These contracts are associated with certain por-
tions of the software, such as methods, and allow pro-
grammers to:

1. Ensure correctness of program execution

2. Assign blame to the “violator” of a contract

3. Conveniently place assertions near the code

Contracts execute at run-time. Some possible uses
for contracts might be to assert that, for a cursor on
some data structure, the inserted item is truly in the data
structure upon insertion. In order to take advantage of
abstraction and code reuse, we would like to be able
to call the already existing read functionality for the
data structure within the contract code, which would
manipulate the cursor. Another example is verifying

the insertion of an object into a tree that self-balances
according to accesses. In both of these cases, “reads”
performed in contract code are not truly and purely
reads into memory.

Therefore contract code can in fact read and write to
memory, and it is possible for contracts to change the
behavior of the program in a language with side-effects.
Intuitively, however, a programmer would not want the
specifications to change the behavior of the program.

In this work, we explore a formal model for erasable

contracts, ensuring that contract code does not impact
the behavior of the program. In other words, if the
contracts were removed or “erased,” then the execution
of the program would remain unaffected. We discuss
this notion more formally later in this paper.

Several implementations of contracts exist. Con-
tracts gained traction through the Eiffel programming
language [3]. The .NET Framework contains an im-
plementation named “Code Contracts”, allowing for a
degree of static verification [2]. The Racket language
provides support for contracts in a higher-order lan-
guage [1].

We look at the behavior of contracts in more detail
below.

Flat contracts Flat contracts apply assertions on a flat
value, such as an integer or string. Intuitively, a flat
contract has type:

⌧ ! bool

Function contracts Function contracts apply asser-
tions on the behavior of a function. More specifi-
cally, they assert conditions about the pre- and post-
conditions of a function. In other words, they are a
function on the domain and range of a function.

Function contracts can be thought of as being com-
posed of two flat contracts corresponding to the pre-
and post-conditions. For example, the below could be



a function contract ensuring correct behavior for the
sqrt function, checking that both the argument and re-
sult are non-negative:

sqrt �x.

p
x

preconditions �x. x � 0

postconditions �r. r � 0

Dependent contracts In dependent contracts, the ar-
gument to a function can be used in checking the post-
conditions of a function. In our sqrt example, function
correctness also depends on the value of the result: we
may want to check that the result r =? p

x satisfies that
r ⇤ r is approximately x. Thus, the post-condition takes
an extra argument corresponding to the original argu-
ment of the function. Extending our previous example:

sqrt . . .

postconditions �x. �r. (r � 0) ^ (|(r ⇤ r)� x| � ✏)

2. Contributions

This work consists of three main components:

1. Calculus and semantics for erasable contracts

2. Type system and proof of type soundness

3. Proof of erasability

In the following sections, we present our work. Full
proofs can be found in the appendix.

3. Grammar

v ::=n|true|false|�x. e|`
e ::=v|x|op(e...)|e e|e; e

|fix e|if e then e else e

|e := e|ref e| !`
|mon(c, e)|check(e, v)

c ::=flat(e)|c ! c

E :=[·]|op(v0, . . . , E, . . . en)|E e|v E|E; e

|fix E|if E then e else e

|E := e|v := E|ref E
|mon(e, E)|mon(E, v)

|flat(E)

⌧ :=int|boolean|⌧ ! ⌧ |⌧ ref|con(⌧)

4. Semantics

Notice that all evaluations now occur at some depth
�. This corresponds to the number of nested contracts
during the execution. In particularly, we see that the
application of a contract by a monitor, which takes a
contract and a value to be checked, enters a checked
state through the rule MON-ENTER. Evaluation then
occurs at a higher depth through the rule MON-CHECK.
Finally, when the application of the contract evaluates
to either true or false, then the monitor finishes through
MON-EXIT.

A store is defined as:

� : Depth ! Var ! Value

CONTEXT
� ` he,�i �! he0,�0i

� ` hE[e],�i �! hE[e0],�0i

�-REDUCTION
� ` h(�x. e)v,�i �! he{v/x},�i

IF-THEN
� ` hif true then e1 else e2,�i �! he1,�i

IF-ELSE
� ` hif false then e1 else e2,�i �! he2,�i

SEQ
� ` hv; e,�i �! he,�i

OP
� ` hop(e . . .),�i �! h⌦(op, e . . . ),�i

where ⌦ is a function defined for each operation

DEREF
� ` h !`,�i �! hv,�i

where �[(�, `)] = v for the first such � 2 �, � � 1, . . . , 0

ALLOC
� ` href v,�i �! h`,�[(�, `) 7! v]i

ASSIGN
� ` h` := v,�i �! hv,�[(�, `) 7! v]i

MON
� ` hmon(v1 ! v2, v),�i �! h�x. mon(v2, v mon(v1, x)),�i

x is a free variable

MON-ENTER
� ` hmon(flat(v0), v),�i �! hcheck(v0 v, v),�i

MON-CHECK
� + 1 ` he,�i �! he0,�0i

� ` hcheck(e, v),�i �! hcheck(e0, v),�0i

MON-EXIT
� ` hcheck(true, v),�i �! hv,�[� + 1 7! ;]i

5. Type System

5.1 Values

T-INT
�;⌃ ` n : int

T-BOOLT
�;⌃ ` true :boolean



T-BOOLF
�;⌃ ` false :boolean

T-LOC
�;⌃ ` ` :⌧ ref

⌃(`) = ⌧

T-ABS
�, x :⌧ ;⌃ ` e :⌧ 0

�;⌃ ` �x :⌧. e :⌧ ! ⌧

0

5.2 Expressions

T-ASSIGN
�;⌃ ` e1 :⌧ ref �;⌃ ` e2 :⌧

�;⌃ ` e1 := e2 :⌧

T-ALLOC
�;⌃ ` e :⌧

�;⌃ ` ref e :⌧ ref

T-DEREF
�;⌃ ` e :⌧ ref

�;⌃ ` !e :⌧

T-COND
�;⌃ ` e1 :boolean �;⌃ ` e2 :⌧ �;⌃ ` e3 :⌧

�;⌃ ` if e1 then e2 else e3 :⌧

T-SEQ
�;⌃ ` e1 :⌧1 �;⌃ ` e2 :⌧2

�;⌃ ` e1; e2 :⌧2

T-APP
�;⌃ ` e1 :⌧ ! ⌧

0 �;⌃ ` e2 :⌧

�;⌃ ` e1 e2 :⌧
0

T-FIX
�;⌃ ` e :⌧ ! ⌧

�;⌃ ` fix e :⌧

T-MON
�;⌃ ` e :⌧ �;⌃ ` c :con(⌧)

�;⌃ ` mon(c, e) :⌧

T-FLAT
�;⌃ ` e :⌧ ! boolean

�;⌃ ` flat(e) :con(⌧)

T-CHECK
�;⌃ ` v :⌧ �;⌃ ` e :boolean

�;⌃ ` check(e, v) :⌧

T-FUNCON
�;⌃ ` c1 :con(⌧1) �;⌃ ` c2 :con(⌧2)

�;⌃ ` c1 ! c2 :con(⌧1 ! ⌧2)

T-OP
�;⌃ ` e1 :⌧1 . . . �;⌃ ` en :⌧n �;⌃ ` �(op, ⌧1, . . . , ⌧n) :⌧

�;⌃ ` op(e1, . . . , en) :⌧

where � is a function defined for each operation

6. Type Soundness

Lemma 1. (Preservation). If �;⌃ ` e : ⌧ and � `
he,�i �! he0�0i then there exists some ⌃0 ◆ ⌃ such

that ⌃0
,�0 ` e

0 :⌧ and �,⌃0 ` �

0
.

Lemma 2. (Progress). Given e,�, �,�,⌃, ⌧ , if �;⌃ `
e : ⌧ then e is a value, 9e0,�0

3 � ` he,�i �! he0,�0i,
or we throw an error.

Lemma 3. (Context well-typedness). If �;⌃ ` e1 : ⌧ 0

and �;⌃ ` E[e1] : ⌧ , then for any e2 where �;⌃ ` e2 :
⌧

0
, we have �;⌃ ` E[e2] :⌧ .

Lemma 4. (Type substitution). If x : ⌧ 0 ` e : ⌧ and

` v :⌧ 0 then ` e{v/x} :⌧ .

7. Formal Erasability

Definition 1. (⌘-similarity). Let =⌘ be the smallest

equivalence relation such that

i e1 ⌘ e2 ) e1 =⌘ e2;
ii �x. (e x) =⌘ e for all x /2 FV (e) and e not a

function of the form �y. (e0 y);
iii e1 =⌘ e2 ) E[e1] =⌘ E[e2]

For notational convenience, we denote he,�i =⌘

he0,�i if e =⌘ e

0.

Definition 2 (Erasability). Let erase be defined recur-
sively and separately for expressions and stores as fol-
lows:

erase(e) =

8
<

:

erase(e0), e ⌘ mon(c, e0)
erase(v), e ⌘ check(e, v)
homomorphic otherwise

erase(�(�, x)) =

⇢
; � � 1
�(�, erase(x)) � = 0

Then we say e is erasable if and only if given

0 ` he,�i �!⇤ he0,�0i

we have, for some ê

0 =⌘ erase(e0),

0 ` herase(e), erase(�)i �!⇤ hê0, erase(�0)i

Lemma 5. (Erasure substitution). 8e, v, x, erase(e{v/x}) ⌘
(erase(e)){erase(v)/x}.

Lemma 6. (Single-step erasability). Suppose 0 `
he,�i �! he0,�0i. Then, for any ê =⌘ e, 0 `
herase(ê), erase(�)i �!⇤ he00, erase(�0)i, where

e

00 =⌘ erase(e0).

Theorem 1. (Erasability). 0 ` he,�i �!⇤ he0,�0i )
8ê =⌘ erase(e) 9e00 =⌘ erase(e0) s.t. 0 ` hê, erase(�)i �!⇤

he00, erase(�0)i

8. Future Work

Our work with erasable contracts can be extended in
a number of ways. The calculus can be extended to
include dependent contracts. Additionally, there may
be times when having side-effecting contracts can be
useful, allowing for “communicating contracts”– for
example, a contract that asserts that function g only
runs if function f has run previously, or a contract that
only allows function f to run twice at most.

Acknowledgments

We would like to thank Stephen Chong and Christos
Dimoulas for their invaluable guidance in our work.



References

[1] Christos Dimoulas, Robert Bruce Findler, Cormac
Flanagan, and Matthias Felleisen. Correct blame for con-
tracts: no more scapegoating. In ACM SIGPLAN No-

tices, volume 46, pages 215–226. ACM, 2011.
[2] Manuel Fähndrich. Static verification for code contracts.

In Static Analysis, pages 2–5. Springer, 2011.
[3] Bertrand Meyer. Eiffel: the language. Prentice-Hall,

Inc., 1992.



Appendix

1 Type Soundness

Lemma 1. (Context well-typedness). If �;⌃ ` e1 : ⌧ 0 and �;⌃ ` E[e1] : ⌧ , then for any e2 where �;⌃ ` e2 : ⌧ 0, we

have �;⌃ ` E[e2] :⌧ .

Proof. Let e1, e2 be given such that �;⌃ ` e1 :⌧ 0 and �;⌃ ` e2 :⌧ 0, and suppose �;⌃ ` E[e1] :⌧ . We consider
cases of E.

• op(v0, . . . , E, . . . en): Consider the function � defined for op. If �;⌃ ` e1 : ⌧ 0, then �(op, ⌧1, . . . , ⌧n)⌧
by T-OP. If �;⌃ ` e2 : ⌧ 0, then �(op, ⌧1, . . . , ⌧n) still evaluates to the same result, and thus �;⌃ `
op(e1, . . . , en) :⌧ .

• E e

0: By T-APP, we must have that for some ⌧

00, ⌧ 0 = ⌧

00 ! ⌧ , and �;⌃ ` e

0 : ⌧ 00. Applying T-APP for
e2 e

0, we see that �;⌃ ` e2 e
0 :⌧ , the same as e1 e0.

• v E: By T-APP, we must have that �;⌃ ` v :⌧ 0 ! ⌧ . Applying T-APP for v e2, we see that �;⌃ ` v e2 :⌧ ,
the same as v e1.

• E; e0: By T-SEQ, we have that �;⌃ ` e

0 : ⌧ . Consider any e2 such that �;⌃ ` e2 : ⌧ 0, and by T-SEQ, it
follows that �;⌃ ` E[e2] :⌧ as desired.

• fix E By T-FIX, we have for some ⌧

00, �;⌃ ` e1 :⌧ 00 ! ⌧

00 and �;⌃ ` E[e1] :⌧ 00.
Therefore, ⌧ 0 ⌘ ⌧

00 ! ⌧

00, ⌧ ⌘ ⌧

00. Consider some e2 such that �;⌃ ` e2 : ⌧ 0, and it follows from T-FIX
that �;⌃ ` E[e2] :⌧ .

• if E then e

0
else e

00: By T-COND, we must have that for some ⌧

00, �;⌃ ` e

0
, e

00 : ⌧ 0, that ⌧ = boolean,
and that �;⌃ ` if E then e

0
else e

00 : ⌧ 00. Applying T-COND for if e2 then e

0
else e

00, we see that
�;⌃ ` if e2 then e

0
else e

00 :⌧ 00, the same as if e1 then e

0
else e

00.

• E := e

0: By T-ASSIGN, we must have that for some ⌧

00, ⌧ = ⌧

00
ref, �;⌃ ` e

0 :⌧ 00, and �;⌃ ` E := e

0 :⌧ 00.

• v := E: From the statement of the lemma and T-ASSIGN, we have that �;⌃ ` v :⌧ 0 ref and ⌧ ⌘ ⌧

0.

�;⌃ ` e1 :⌧

�;⌃ ` E[e1] :⌧

Consider some e2 such that �;⌃ ` e2 :⌧ 0. By T-ASSIGN, we must have that �;⌃ ` E[e2] :⌧ as desired.

• ref E If �;⌃ ` e1 :⌧ 0 and �;⌃ ` E[e1] :⌧ , then by T-REF, we have that ⌧ ⌘ tau

0
ref. Now consider any

e2 such that �;⌃ ` e2 :⌧ 0 and it follows from T-ALLOC that �;⌃ ` E[e2] :⌧ where ⌧ ⌘ ⌧

0
ref.

• mon(e0, E) If �;⌃ ` E[e1] :⌧ , then by T-MON, �;⌃ ` e1 :con(⌧), ⌧ 0 ⌘ con(⌧), and �;⌃ ` e

0 :⌧ . Consider
some e2 such that �;⌃ ` e2 :con(⌧), and it follows by T-MON that �;⌃ ` E[e2] :⌧ .

• mon(E, v) If �;⌃ ` E[e1] :⌧ , then by T-MON, �;⌃ ` e1 :⌧ , ⌧ 0 ⌘ ⌧ , and �;⌃ ` v :con(⌧). Consider some
e2 such that �;⌃ ` e2 :⌧ , and it follows by T-MON that �;⌃ ` E[e2] :⌧ as desired.

• flat(E) If �;⌃ ` e1 : ⌧ 0, then by T-FLAT, �;⌃ ` E[e1] :con(⌧ 0) and ⌧ ⌘ con(⌧ 0). Consider some e2 such
that �;⌃ ` e2 :⌧ 0, then by T-FLAT again, �;⌃ ` E[e2] :con(⌧ 0) as desired.

1



1.1 Preservation

Lemma 2. (Preservation). If �;⌃ ` e : ⌧ and � ` he,�i �! he0�0i then there exists some ⌃0 ◆ ⌃ such that

⌃0
,�0 ` e

0 :⌧ and �,⌃0 ` �

0
.

Proof. We proceed by induction on the derivation of e �! e

0. Assume that ` e :⌧ and e �! e

0.

• �-REDUCTION e ⌘ (�x. e1) v, and e

0 ⌘ e1{v/x}
Assume that (�x. e1) v is well-typed. The last rule used to derive this must have to been T-APP. It
follows that ` (�x. e1) :⌧ ! ⌧

0 and ` v :⌧ .
In order for ` (�x. e1) : ⌧ ! ⌧

0 to be true, the last rule used to derive this must have been T-ABS. It
follows that x : ⌧ ` e :⌧ 0 by the substitution lemma.

• IF-THEN e ⌘ if true then e1 else e2, and e

0 ⌘ e1

Assume that if true then e1 else e2 is well-typed. The last rule used to derive this must have been
T-COND, and we have that ` e1 :⌧ as desired.

• IF-ELSE e ⌘ if false then e1 else e2, and e

0 ⌘ e2

Assume that if false then e1 else e2 is well-typed. The last rule used to derive this must have been
T-COND, we have that ` e2 :⌧ as desired.

• SEQ e ⌘ v; e1, and e

0 ⌘ e1

Assume that v; e1 is well-typed. The last rule used to derive this must have been T-SEQ. It follows
that ` e1 :⌧ as desired.

• ASSIGN e ⌘ ` := v, and e

0 ⌘ v

Assume that ` := v is well-typed. By T-ASSIGN, ` v :⌧ as desired.

• DEREF e ⌘!`, and e

0 ⌘ v

Assume that !` is well-typed. The last rule used to derive this must have been T-DEREF. Then ` has
type ⌧ ref. From the axiom T-LOC, we have that ⌃(`) = ⌧ , from which it follows that dereferencing `

yields ` v :⌧ .

• ALLOC e ⌘ ref v, and e

0 ⌘ `

` is well-typed by the axiom T-LOC.

• MON e ⌘ (mon(v1 7! v2, v)) v0, and e

0 ⌘ mon(v2, (v(mon(v1, v0))))
We know that e is well-typed, and the last rule used to derive this must have been T-APP. It follows
that the both the mon and v

0 terms that compose e are well-typed.
If mon(v1 7! v2, v) is well-typed, it must be the case that T-MON was the last rule in the derivation.
Then:

– ` v1 7! v2 : con(⌧1 ! ⌧). From this, we further conclude, using T-FUNCON, that ` v1 : con(⌧1)
and ` v2 :con(⌧).

– Because the above term has type con(⌧1 ! ⌧), then by the hypothesis of T-MON, ` v :⌧1 ! ⌧ .
– ` v

0 :⌧ 0 by the hypothesis of T-MON

Now, apply these conditions fulfill the hypotheses for the T-MON and T-APP rules such that ` e

0 :⌧ .

• MON-ENTER e ⌘ mon(flat(v0), v), and e

0 ⌘ check(v0 v, v)
We know that ` e : ⌧ , and the last rule used to derive this must have been T-MON. It follows that
` v :⌧ and ` flat(v0) :con(⌧ . By T-FLAT, this means that ` v

0 :⌧ ! boolean.
Consider the rule T-CHECK. By T-APP, ` v

0
v :boolean. We showed earlier that ` v :⌧ , and it follows

by the rule T-CHECK that ` e

0 :⌧ .



• MON-CHECK e ⌘ check(e1, v), and e

0 ⌘ check(e2, v)
If ` e : ⌧ , then by T-CHECK, ` e1 : boolean and ` v : ⌧ . We need to show that ` e2 : boolean. We
can simply apply the preservation lemma, given that ` e1 :boolean and e1 �! e2. This satisfies the
hypothesis of T-CHECK and consequently ` e

0 :⌧ .

• MON-EXIT e ⌘ check(true, v), and e

0 ⌘ v

Assume that check(true, v) is well-typed. The last rule used to derive this must have been T-MON,
and it follows that ` v :⌧ .

1.2 Progress

Lemma 3. (Progress). Given e,�, �,�,⌃, ⌧ , if �;⌃ ` e : ⌧ then e is a value, 9e0,�0
3 � ` he,�i �! he0,�0i, or we

throw an error.

Proof. We proceed by induction on the derivation of �;⌃ ` e :⌧ .

• T-INT, T-BOOLT, T-BOOLF
e is trivially a value—n, true, or false, respectively—and � is unchanged.

• T-LOC
e is trivially a value—`—and � is unchanged.

• T-ABS
e is trivially a value—�x.e

0—and � is unchanged.

• T-ASSIGN
e ⌘ e1 := e2: if he1,�i or he2,�i can step to he0,�i by the inductive hypothesis, then by CONTEXT
we are done. If both are already values, then since we also have that �;⌃ ` e1 : ⌧ ref and is hence a
location to which we can assign v2, we have e ⌘ v1 := v2 and � ` he,�i �! hv2,�[(�, v1) 7! v2]i by
ASSIGN.

• T-ALLOC
e ⌘ ref ê: if hê,�i can step to he0,�0i by the inductive hypothesis, then by CONTEXT we are done. If
ê = v is a value, then we have � ` he,�i ⌘ href v,�i �! h`,�[(�, `) 7! v]i by ALLOC.

• T-DEREF
e ⌘ !ê: if hê,�i can step to he0,�0i by the inductive hypothesis, then by CONTEXT we are done. If ê = v

is a value, then since �;⌃ ` e : ⌧ ref, we know v is a location, and we have � ` he,�i ⌘ h !v,�i �!
hv0,�i where �[(�), v] = v

0 for the first such � 2 �, � � 1, . . . , 0.

• T-COND
e ⌘ if e1 then e2 else e3: by CONTEXT, we consider e1. If he1,�i can step to he0,�0i by the inductive
hypothesis, then by CONTEXT we are done. If e0 = v is a value, then we know that �;⌃ ` v :boolean,
and so is either true, in which case � ` he,�i �! he2,�0i, or false, in which case � ` he,�i �! he3,�0i.

• T-APP
e ⌘ e1 e2: if he1,�i or he2,�i can step to an he0,�0i by the inductive hypothesis, then by CONTEXT
we are done. If both are values v1 and v2, respectively, then we have that �;⌃ ` v1 : ⌧ ! ⌧

0 and
�;⌃ ` v2 :⌧ , therefore we in fact can have � ` he,�i ⌘ h�(x. e)v,�i �! he{v/x},�i by �-REDUCTION.

• T-FIX
e ⌘ fix ê: if hê,�i can step to an he0,�0i by the inductive hypothesis, then by CONTEXT we are done. If
ê = v is a value, then we know that �;⌃ ` v :⌧ ! ⌧ , and by definition of fix we have that fix ê ⌘ fix v.

• T-MON
e ⌘ mon(ĉ, ê): if hê,�i can step to an he0,�0i by the inductive hypothesis, then by CONTEXT we are
done. If it is a value v where �;⌃ ` v :⌧ , then we consider ĉ. Note that �;⌃ ` v :⌧ and �;⌃ ` ĉ :con(⌧).



– ĉ ⌘ flat(c0): By T-FLAT, �;⌃ ` c

0 : ⌧ ! boolean, so by T-CHECK, we can take the step � `
hmon(ĉ, ê),�i �! hcheck(c0 v, v),�i

– ĉ ⌘ c

0
1 ! c

0
2: Note �;⌃ ` ĉ : con(⌧1 ! ⌧2) and ⌧ = ⌧1 ! ⌧2. By T-FUNCON, �;⌃ ` c

0
1 : con(⌧1)

and �;⌃ ` c

0
2 : con(⌧2). Therefore, by T-MON, we can take the step � ` hmon(c01 ! c

0
2, v)i �!

h�x. mon(c2, v mon(c1, x)),�i.

• T-FLAT
This is impossible because flat(c) is not an expression.

• T-CHECK
e ⌘ check(ê, v): if hê,�i can step to an he0,�0i by the inductive hypothesis, then by CONTEXT we
are done. If it is a value v

0, then we have �;⌃ ` v

0 : boolean, so if v0 = true, then by MON-EXIT,
� ` he,�i �! hv,�[� + 1 7! ;]i; if v0 = false, then we throw an error.

• T-FUNCON
This is impossible because c1 ! c2 is not an expression.

Lemma 4. (Type substitution). If x : ⌧ 0 ` e :⌧ and ` v :⌧ 0 then ` e{v/x} :⌧ .

2 Erasure

Lemma 5. (Erasure substitution). 8e, v, x, erase(e{v/x}) ⌘ (erase(e)){erase(v)/x}.

Proof. Let e, v, x be given. We proceed by induction on the structure of e.

Base case

• n, true, false, `, !`:
By definition of erase, e ⌘ erase(e), and for any w, since x does not appear in e, e ⌘ e{w/x}. Note
that erase(e{v/x}) ⌘ erase(e) ⌘ e and that (erase(e)){erase(v)/x}) ⌘ e{erase(v)/x} ⌘ e.

• x: We have erase(e{v/x}) ⌘ erase(v) and that (erase(e)){erase(v)/x}) ⌘ x{erase(v)/x} ⌘ erase(v).

Inductive hypothesis Suppose that for sub-expressions e, we have that erase(e{v/x}) ⌘ (erase(e)){erase(v)/x}.

Inductive step

• mon(c, e0):

erase(e{v/x})
⌘erase((mon(c, e0)){v/x}) ⌘ erase(mon(c{v/x}, e0{v/x}))
⌘erase(e0{v/x} by the definition of erase
⌘(erase(e0)){erase(v)/x} by the inductive hypothesis
⌘(erase(mon(c, e0))){erase(v)/x} by the definition of erase
⌘(erase(e)){erase(v)/x}

• check(e0, v0):

erase(e{v/x})
⌘erase((check(e0, v0)){v/x}) ⌘ erase(check(e0{v/x}, v0{v/x}))
⌘erase(v0{v/x} by the definition of erase
⌘(erase(v0)){erase(v)/x} by the inductive hypothesis
⌘(erase(check(e0, v0))){erase(v)/x} by the definition of erase
⌘(erase(e)){erase(v)/x}



• other: erase is defined homomorphically for the remaining cases, and this, combined with the in-
ductive hypothesis, establishes the desired property. We demonstrate application; the other cases are
similar.

erase(e{v/x})
⌘erase((e1 e2){v/x}) ⌘ erase((e1{v/x})(e2{v/x}))
⌘(erase(e1{v/x}))(erase(e2{v/x})) by the homomorphism of erase
⌘((erase(e1)){erase(v)/x})((erase(e2)){erase(v)/x}) by the inductive hypothesis
⌘(erase(e1 e2)){erase(v)/x} by the homomorphism of erase
⌘(erase(e)){erase(v)/x}

Definition 1. (⌘-similarity). Let =⌘ be the smallest equivalence relation such that

i e1 ⌘ e2 ) e1 =⌘ e2;

ii �x. (e x) =⌘ e for all x /2 FV (e) and e not a function of the form �y. (e0 y);

iii e1 =⌘ e2 ) E[e1] =⌘ E[e2]

For notational convenience, we denote he,�i =⌘ he0,�i if e =⌘ e

0.

Lemma 6. (Single-step erasability). Suppose 0 ` he,�i �! he0,�0i. Then, for any ê =⌘ e, 0 ` herase(ê), erase(�)i �!⇤

he00, erase(�0)i, where e

00 =⌘ erase(e0).

Proof. We induct on the height of the derivation of � ` he,�i �! he0,�0i, proving the following:
If � ` he,�i �! he0,�0i, then 8ê =⌘ erase(e) 9e00 =⌘ erase(e0) s.t. � ` hê, erase(�)i �!⇤ he00, erase(�0)i,

where erase(�) = erase(�0) if � � 1.
Let ê =⌘ e.

Base case

• �-REDUCTION: � ` h(�x. e0)v,�i �! he0{v/x},�i

� `herase(ê), erase(�)i
=⌘herase((�x. e0)v), erase(�)i
⌘h(�x. erase(e0))(erase(v)), erase(�)i by definition of erase

�!h(erase(e0)){erase(v)/x}, erase(�)i
⌘herase(e0{v/x}), erase(�)i by the Substitution Lemma

• IF-THEN: � ` hif true then e1 else e2,�i �! he1,�i

� `herase(ê), erase(�)i
=⌘herase(if true then e1 else e2), erase(�)i
⌘hif erase(true) then erase(e1) else erase(e2), erase(�)i by definition of erase
⌘hif true then erase(e1) else erase(e2), erase(�)i

�!herase(e1), erase(�)i

• IF-ELSE: � ` hif false then e1 else e2,�i �! he2,�i

� `herase(ê), erase(�)i
=⌘herase(if false then e1 else e2), erase(�)i
⌘hif erase(false) then erase(e1) else erase(e2), erase(�)i by definition of erase
⌘hif false then erase(e1) else erase(e2), erase(�)i

�!herase(e2), erase(�)i



• SEQ We have that ê =⌘ v; e1 and e

0 ⌘ e1. Note that � = �

0. We want to show that:

herase(ê), erase(�)i) �!⇤ herase(e1), erase(�)i

By definition of erase and application of SEQ:

erase(ê) =⌘ erase(v); erase(e1) �! erase(e1)

We have trivially that erase(�) = erase(�).
Therefore, we have the desired result:

� ` herase(v; e1), erase(�)i �! herase(e1), erase(�)i

• DEREF We have that ê =⌘ !`, e0 ⌘ v, and � ⌘ �

0.

herase(ê), erase(�)i
=⌘herase( !`), erase(�)i
⌘h !`, erase(�)i by definition of erase

�!h(erase(�)) [(�, `)], erase(�)i by DEREF

�!herase(v), erase(�)i by definition of erase on �

• ALLOC We have that ê =⌘ ref v, e

0 ⌘ `. We need to show that for some �

0 , erase(�) becomes
erase(�[(�, `) 7! v]).
Recall that ` ⌘ erase(`) .

herase(ê), erase(�)i
=⌘herase(ref v), erase(�)i
⌘href erase(v), erase(�)i by definition of erase

�!h`, erase(�)[(�, `) 7! erase(v)]i by ALLOC

⌘herase(`), erase(�)[(�, `) 7! v]i by definition of erase on ` and �

⌘herase(`), erase(�)[(�, `) 7! v]i

• ASSIGN We have that ê =⌘ ` := v, e0 ⌘ v. We also need to show that erase(�) becomes erase(�[(�, `) 7!
v]). Similar to the proof for ALLOC:

herase(ê), erase(�)i
=⌘herase(` := v), erase(�)i
�!herase(`) := erase(v), erase(�)i
⌘` := erase(v), erase(�)i (by definition of erase on `)

�!herase(v), erase(�)[(0, `) 7! erase(v)]i (by ASSIGN)
⌘herase(v), erase(�[(0, `) 7! v])i (by definition of erase on ` and �)

• MON: � ` hmon(v1 ! v2, v),�i �! h�x. mon(v2, v mon(v1, x)),�i where x is a free variable
By definition of erase,

herase(ê), erase(�)i =⌘ herase(mon(v1 ! v2, v)), erase(�)i ⌘ herase(v), erase(�)i

Also,

herase(�x. mon(v2, v mon(v1, x))), erase(�)i
⌘h�x. erase(mon(v2, v mon(v1, x))), erase(�)i
⌘h�x. erase(v mon(v1, x)), erase(�)i
⌘h�x. erase(v) erase(mon(v1, x)), erase(�)i
⌘h�x. erase(v) erase(x), erase(�)i
=⌘herase(v), erase(�)i



hence � ` herase(mon(v1 ! v2, v)), erase(�)i �!0 herase(�x. mon(v2, v mon(v1, x))), erase(�)i.

• MON-ENTER: � ` hmon(flat(v0), v),�i �! hcheck(v0 v, v),�i
By definition of erase,

herase(ê), erase(�)i =⌘ herase(mon(flat(v0), v)), erase(�)i ⌘ herase(v), erase(�)i

and
herase(check(v0 v), v), erase(�)i ⌘ herase(v), erase(�)i

hence � ` herase(mon(flat(v0), v)), erase(�)i �!0 herase(check(v0 v), v), erase(�)i.

• MON-EXIT: � ` hcheck(true, v),�i �! hv,�[1 7! ;]i
By definition of erase,

erase(ê) =⌘ erase(check(true, v)) ⌘ erase(v)

Also,

erase(�(�, x)) =

⇢
; � � 1
�(�, erase(x)) � = 0

erase(�[1 7! ;](�, x)) =
⇢

; � � 1
erase(�(�, x)) = �(�, erase(x)) � = 0

hence the erasure of the two stores are also equivalent, as desired.

Inductive hypothesis Suppose that for derivation trees of height h, � ` he,�i �! he0,�0i ) 8ê =⌘

e 9e00 =⌘ erase(e0) s.t. � ` herase(ê), erase(�)i �!⇤ he00, erase(�0)i, where erase(�0) = erase(�) if � � 1.

Case h+ 1

• CONTEXT

Consider the case v E. From CONTEXT, we know that E[e] �! E[e0]. The premise is e �! e

0, and by
the inductive hypothesis, we know that erase(e) �!⇤

erase(e0).
By the definition of erase,

erase(E[e]) ⌘ erase(v e)

Now, we have:
erase(v e) �! erase(v) erase(e)

Using the inductive hypothesis and repeated applications of the CONTEXT rule with the premise
erase(e) �! erase(e00) for some e

00, we yield:

erase(v) erase(e) �!⇤
erase(v) erase(e0) ⌘ erase(E[e0])

This is the desired result.
The other evaluation contexts follow very similarly by straightforward application of the definition
of erase and repeated application of the CONTEXT rule.
By definition of erase,

hê, erase(�)i =⌘ herase(E[e0]), erase(�)i

• MON-CHECK

By definition of erase,

herase(ê), erase(�)i =⌘ herase(check(e, v)), erase(�)i ⌘ herase(v), erase(�)i

and
herase(check(e0, v)), erase(�0)i ⌘ herase(v), erase(�0)i

If � � 1, then � + 1 � 1 certainly, and by the inductive hypothesis, erase(�0) = erase(�).



Theorem 1. (Erasability). 0 ` he,�i �!⇤ he0,�0i ) 8ê =⌘ erase(e) 9e00 =⌘ erase(e0) s.t. 0 ` hê, erase(�)i �!⇤

he00, erase(�0)i

Proof. We prove that

0 ` he,�i �!n he0,�0i ) 8ê =⌘ erase(e) 9e00 =⌘ erase(e0) 0 ` hê, erase(�)i �!⇤ he00, erase(�0)i

and proceed with induction on n.

Base case Suppose that 0 ` he,�i �!0 hv,�0i, i.e. e is a value and e ⌘ v. It follows that:

hê, erase(�)i =⌘ herase(e), erase(�)i ⌘ herase(v), erase(�)i

As � = �

0, this yields the desired result:

0 ` hê, erase(�)i �!⇤ he00, erase(�)i

where e

00 =⌘ erase(v).

Inductive hypothesis Suppose that 0 ` he,�i �!n he0,�0i ) 8ê =⌘ erase(e) 9e00 =⌘ erase(e0) s.t. 0 `
hê, erase(�)i �!⇤ he00, erase(�0)i.

Case n+1 Suppose we have 0 ` he,�i �!n he00,�00i �! he0,�0i. By the inductive hypothesis, we have that
0 ` herase(e), erase(�)i �!⇤ hê00, erase(�00)i where ê00 =⌘ erase(e00). By the lemma, 0 ` hê00, erase(�00)i �!⇤

hê0, erase(�0)i, where ê

0 =⌘ erase(e0), finishing the proof.


